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On Imposing Detailed Balance in Complex Reaction Mechanisms

In a recent article, Colquhoun et al. (Colquhoun, D., K. A.

Dowsland, M. Beato, and A. J. Plested. 2004. Biophys. J.

86:3510–3518) present a method to impose detailed balance

on a complex reaction mechanism, which relies on identi-

fying reaction cycles. We propose a method to impose

detailed balance without explicitly considering reaction

cycles. In our method, the detailed balance constraint is im-

posed by parameterizing the model in terms of the concen-

trations and balanced fluxes at equilibrium. A general rate

matrix satisfying detailed balance is derived from these pa-

rameters. We illustrate this technique for voltage- and ligand-

dependent single molecule kinetics. In the single molecule

case, when ligand binding obeys the law of mass action, we

point out that our parameterization correctly gives the ligand

dependence of the equilibrium probabilities without solving

any equations. We also show how to impose detailed balance

for general nonlinear mass-action kinetics. The techniques

for obtaining a minimal reaction network subject to the

detailed balance constraint are also presented and illustrated

on a large network.

INTRODUCTION

The principle of microscopic reversibility implies detailed

balance—the statement that, at thermodynamic equilibrium,

each individual reaction is balanced. That is, at equilibrium

each individual reaction occurs with equal forward and

backward fluxes. A reaction system that satisfies detailed bal-

ance does not consume or dissipate free energy at thermo-

dynamic equilibrium (1). Although reaction systems with no

closed loops (or acyclic systems) always satisfy detailed

balance, most complex reaction schemes involve reaction

cycles, and satisfying detailed balance requires that the prod-

uct of equilibrium constants around a reaction cycle equals

one. Colquhoun et al. (2) recently presented methods to

impose detailed balance on complex reaction mechanisms,

such as ion channel kinetic schemes modeled with finite

Markov chains. The methods rely on finding a fundamental

cycle basis with respect to a spanning tree of a graph rep-

resenting the reaction topology. In this comment, we discuss

an alternative method that balances the forward and back-

ward fluxes of each reversible reaction and does not require

direct consideration of reaction cycles. The method will be

discussed for single molecule dynamics and mass-action

kinetics. We will also discuss techniques for identifying

a minimal reaction network for imposing detailed balance.

SINGLE MOLECULE DYNAMICS

Idealized single molecules, such as an ion channel with a

finite number of states, are often modeled by homogeneous

Markov processes, which can in general be described by the

so-called forward equation,

dPðtÞ
dt

¼ PðtÞQ;

where element pij(t) in matrix P(t) is the probability that the

system is in state j at time t, provided it was in state i at time

0, and Q is called the generator matrix, whose element qij

denotes the rate constant for the transition from state i to j,
i 6¼ j. Each diagonal entry qii ¼ 2+

j6¼i
qij, so that Qu ¼ 0,

where u is a column vector containing all ones. Detailed

balance holds at equilibrium implying that all fluxes balance:

wiqij ¼ wjqji (3,4), where w is the equilibrium distribution

of states such that wTQ ¼ 0. Defining a diagonal matrix

W ¼ diag(w), the detailed balance conditions are written as

WQ ¼ ðWQÞT : (1)

Imposing detailed balance on a reaction network requires

that Q satisfies Eq. 1. It is evident that the matrix Qs ¼ WQ
is a symmetric generator matrix and entries in Qs are equi-

librium fluxes. Q can be written in terms of Qs and W as

follows:

Q ¼ W
21
Qs: (2)

Note that W need not be normalized for Q to obey detailed

balance. Normalization can be incorporated in Qs. However,

if W is normalized then it gives the equilibrium distribution

and Qs gives the equilibrium fluxes. By specifying the

equilibrium distribution (entries in W) and the equilibrium

fluxes (entries in Qs), one can impose detailed balance on Q
using the above equation, which in fact provides an al-

ternative parameterization scheme to that of directly spec-

ifying a system using rate constants in Q. This way of

specifying a system is especially useful in situations where

equilibrium distribution and fluxes can be obtained from

measured data. Constraints in addition to detailed balance,

such as measured rate constants or dependence between rate

constants, which can be expressed by equations that are

linear with respect to the logarithms of rate constants, are
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also linear with respect to the logarithms of the components

of Qs and W. Therefore, the technique to calculate con-

strained parameters in terms of free parameters using linear

equations proposed by Colquhoun et al. (2) and Qin et al. (5)

also applies.

In practice, a model reaction scheme is given a priori. The

topology of this scheme can be encoded within Qs (i.e., a

nonzero entry indicates a reaction and a zero entry indicates

no reaction), and topology is preserved in Eq. 2. In the case

of finding a Q matrix that best fits data, via a maximum

likelihood method (6), Eq. 2 can be substituted directly into

the likelihood formula. The following outlines a procedure

for using Eq. 2 in a maximum likelihood method (assuming

no other constraints):

1. Specify a symmetric generator Qs with arbitrary positive

entries consistent with a given reaction scheme. Specify

an arbitrary equilibrium distribution vector w.

2. Calculate Q ¼ W21Qs, where W ¼ diag(w).

3. For fitting data using a maximum likelihood method,

maximize the likelihood function by adjusting w and

fluxes in Qs iteratively, until satisfactory parameters are

found.

The values Qs and w can be enforced to be positive during

the course of model fitting by using constrained optimization

or following Qin et al. (5).

Parameter dependence: ligand concentration, voltage

The above program can be carried out in the case that there is

dependence on other physical parameters such as ligand con-

centration, pressure, temperature, voltage, etc. In principle,

one can choose Qs and W to be any desired functions of

the parameters.

Note that if detailed balance is to be satisfied for all

physical parameters, the ratio of the product of rate constants

one way around any loop to the product the other way around

the loop must necessarily be independent of parameter val-

ues. Here we give a physically motivated prescription for

enforcing detailed balance, without considering loops, for

reactions with exponential voltage dependence and ligand

dependence governed by the law of mass action. Mass action

reactions have monomial ligand dependence, so in the case

of a single ligand with concentration ½L�,

qij ¼ kij½L�aije
bijV;

where aij are integers, and kij and bij are constants. This

formulation can be made to enforce positivity of qij (which is

sometimes not desirable (7)) by replacing kij with emij (5).

From Eq. 2, we know that under detailed balance, each rate

constant qij is the ratio of the equilibrium flux qs
ij to the

equilibrium probability wi. Parameterizing qs
ij as ks

ij½L�
as

ijeb
s
ijV

(i 6¼ j, qs
ii ¼ 2+

j6¼i
qs

ij) and wi as ki½L�aiebiV results in the

factorization

qij ¼
q

s

ij

wi

¼
k

s

ij

ki

½L�a
s
ij

½L�ai

e
b

s
ijV

e
biV

; (3)

where ks
ij, b

s
ij, and as

ij are symmetric in i and j. This equation

provides a formula for imposing detailed balance in a model

with ligand- and voltage-dependence. If positivity is desired,

ks
ij and ki can be written as exponentials (5): ks

ij ¼ exp(ms
ij)

and ki ¼ edi , so that ln(qij) ¼ ms
ij – di 1 (as

ij – ai) ln(L) 1

(bs
ij – bi)V. For mass-action kinetics, ai is the number of

ligands bound in the ith state and as
ij is the total number of

ligands present in the reversible reaction from state i to state

j. (To be specific, if the state i has p ligands bound and state j
has p 1 r ligands bound and the reaction is Si1nL�
Sj1ðn2rÞL, then as

ij ¼ p 1 n for mass action.) The bi and

bij are the net charge displacements along the electric field

in state i and the transition state between states i and j, re-

spectively. With this formulation, the wi values are specified

in terms of explicit parameters of the model, thus giving

the equilibrium probabilities, up to a normalization scalar

that is introduced below. The case of more than one species of

ligand is handled similarly and treated in the following

example.

We illustrate how to impose detailed balance on the de

Young-Keizer model (8) of the IP3 receptor, which is a

calcium channel that binds two ligands, Ca21 and IP3. The

model, which has six fundamental cycles, is shown in Fig. 1.

The equilibrium vector with proper ligand dependence is

simply written down according to the prescription,

wi ¼ kiC
aiC I

aiI ;

where the ligand concentrations [Ca21] and [IP3] are de-

noted as C and I, respectively, and where aiC and aiI are the

number of calcium ions and IP3 molecules, respectively,

FIGURE 1 State transition model of an IP3 receptor in the endoplasmic

reticulum with calcium dependence. The ion channel is gated by two

ligands: calcium ([Ca21]) and inositol 1,4,5-trisphosphate ([IP3]).
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bound in state i(i ¼ 0, ., 7). For the de Young-Keizer

model,

w ¼ 1

h
½1; k1C; k2C; k3C

2
; k4I; k5IC; k6IC; k7IC

2�;

where h is the normalization scalar defined by +
i
wi ¼ 1:

h ¼ 11k1C1k2C1k3C
2
1k4I1k5IC1k6IC1k7IC

2
:

Note that we have arrived at the formula for wi, including

w6 ¼ k6IC, which exhibits the celebrated bell-shaped calcium-

dependence of the open probability in the de Young-Keizer

model (8), without actually solving any equations.

For mass-action kinetics involving noncatalytic ligands,

the exponents as
ij, which give the ligand dependence of Qs,

obey

a
s

ij ¼ maxðai; ajÞ: (4)

Symmetry of as follows from the symmetry of the max

function. For models with multiple ligands, Eq. 4 holds for

each ligand separately. For the de Young-Keizer model,

a
s

ijI ¼ maxðaiI; ajIÞ

a
s

ijC ¼ maxðaiC; ajCÞ:

The fluxes are then given by

where the diagonal entries xi are minus the sum of the other

elements in each row, as is required for a generator.

DEGREES OF FREEDOM

To calculate the number of free parameters in Eq. 2, let Ns

and Nr denote the numbers of states and reversible reactions

(i.e., the number of links in the state-transition diagram),

respectively. Without any constraint, the transition matrix Q
contains 2Nr free parameters. If detailed balance is the only

physical constraint that the system must obey, the number of

free parameters is Nr 1 Ns – 1 because there are Nr free

parameters in the symmetric matrix Qs and Ns – 1 in w (with

a normalization constraint wTu ¼ 1). Colquhoun et al. (2)

obtained the same number of free parameters by counting the

number of connections constrained by detailed balance

around a set of fundamental cycles ((2), their Eq. 9). Detailed

balance still holds for Q even if w is not normalized because

a multiplication constant that normalizes w can always

be factored out of Qs. Here we consider the example shown

in Colquhoun et al. ((2), their Fig. 3). For that scheme, Q can

be written as

Q ¼ W
21
Qs

¼ W
21

d11 x1 0 x2 0 x3 0 0

x1 d22 x4 0 0 0 x5 0

0 x4 d33 x6 0 0 0 x7

x2 0 x6 d44 x8 0 0 0

0 0 0 x8 d55 x9 0 x10

x3 0 0 0 x9 d66 x11 0

0 x5 0 0 0 x11 d77 x12

0 0 x7 0 x10 0 x12 d88

0
BBBBBBBBBB@

1
CCCCCCCCCCA

;

where each xi denotes a nonzero entry. The diagonal entries

dii assure that every row sums to zero. The parameters are the

xi and the wi. In agreement with Colquhoun et al. (2), W and

Qs have 19 free parameters: the 12 xi and 7 independent wi.

MASS-ACTION KINETICS

Here we consider a general biochemical network with mass-

action rate laws. An idealized reaction model is implied, i.e., all

reactions proceed in an isothermal and well-mixed container

of a constant volume. Whereas before we treated ligand con-

centrations as parameters, now the concentration of each

participant is a dynamic variable. A network has a set of m
biochemical species (e.g., molecules, proteins and protein

Qs ¼
1

h

x0 k01C k02C 0 k04I 0 0 0

k01C x1 0 k13C
2

0 k15IC 0 0

k02C 0 x2 k23C
2

0 0 k26IC 0

0 k13C
2

k23C
2

x3 0 0 0 k37IC
2

k04I 0 0 0 x4 k45IC k46IC 0

0 k15IC 0 0 k45IC x5 0 k57IC
2

0 0 k26IC 0 k46IC 0 x6 k67IC
2

0 0 0 k37IC
2

0 k57IC
2

k67IC
2

x7

0
BBBBBBBBBB@

1
CCCCCCCCCCA

;
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complexes, etc.) x ¼ fxiji ¼ 1, .., mg. A reaction-group G is

defined as a set of species participating in a reaction, either as

reactants or products. Any reaction within the network is a

process that converts reactants into products, and a unidirec-

tional reaction is denoted as a group transition: Gr /Gp. Note

that reactants in one reaction could be products in another.

Assuming the network has n distinct reaction groups, we can

compile information about stoichiometry into the m 3 n
stoichiometric matrix S. The components sij are the stoichio-

metric coefficients for species i in reaction group j (note that

sij $ 0). All the reaction groups can be listed using an n by

1 column vector gðxÞ, where each entry giðxÞ ¼
Qn

j¼1 x
sji

j . A

biochemical network is characterized by kinetic rate constants

for the reactions. This kinetic information can be compiled into

an n 3 n kinetics matrix K, where kij(i 6¼ j) is the kinetic rate

constant for the reaction that converts reaction group i into

group j. For a mass-action rate law, gi(x)kij is the corresponding

reaction rate. The diagonal entry kii of K consolidates rate

constants for all the outgoing fluxes from reaction group gi(x),

i.e., kii ¼ 2+
j;j6¼i

kij. The flux rates for all the groups can be

expressed as a vector f ¼ KTg(x) and the whole system can

be described by the following dynamic equation,

dx
dt

¼ Sf ¼ SK
TgðxÞ: (5)

This description of general mass-action kinetics was de-

veloped by Horn and Jackson (9). Notations adopted here are

similar to those of Chaves et al. (10). The detailed balance

constraint can be described as gi(xeq)kij ¼ gi(xeq)kji, where

xeq denotes the equilibrium concentrations. The constraint

can also be written in matrix form as

GK ¼ ðGKÞT ;

where G ¼ diag(g(xeq)). Thus,

K ¼ G21Ks; (6)

where Ks ¼ GK is a symmetric matrix. To impose detailed

balance on this system using the method described above,

one can first specify the equilibrium concentration vector xeq,

subsequently construct vector g(xeq), and then use Eq. 6 to

calculate K. Analogous to the analysis for single molecule

dynamics one can use steady-state data to estimate free

parameters in G and K. A simple example of a chemical re-

action model with a single reaction cycle is shown in Fig. 2.

If we only consider the reaction scheme in the dashed box,

we have the chemical species vector x ¼ [A B C D]T. The

stoichiometric matrix is

S ¼

1 0 0

2 0 0

0 1 0

0 0 1

0
BB@

1
CCA

and the rate matrix is

K ¼
2ðk11k6Þ k1 k6

k2 2ðk21k3Þ k3

k5 k4 2ðk41k5Þ

0
@

1
A;

and g(x) ¼ [AB2 C D]T. For a specified equilibrium vector

of concentrations xeq ¼ [Aeq Beq Ceq Deq], we have

G ¼
AeqB

2

eq 0 0

0 Ceq 0

0 0 Deq

0
@

1
A:

If Ks is constructed as

2ða1bÞ a b

a 2ða1gÞ g

b g 2ðb1gÞ

0
@

1
A;

then by Eq. 6 the rate constant matrix that satisfies detailed

balance is

K ¼

2
a1b

AeqB
2

eq

a

AeqB
2

eq

b

AeqB
2

eq

a

Ceq

2
a1g

Ceq

g

Ceq

b

Deq

g

Deq

2
b1g

Deq

0
BBBBBB@

1
CCCCCCA
:

As can be easily confirmed, this matrix satisfies the detailed

balance constraint derived from the loop-based approach,

k1k3k5 ¼ k2k4k6.

MINIMAL REACTION SCHEME

All chemical reactions obey detailed balance because

chemistry obeys the principle of microscopic reversibility.

However, for systems that are out of equilibrium, detailed

FIGURE 2 A hypothetical chemical reaction model with one cycle.

The network in the dashed box is the minimal network upon which the

detailed balance must be imposed.
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balance is violated because of nonequilibrium constraints.

Many biochemical reaction systems are open systems that

contain irreversible and energy-driven reactions (e.g., pro-

tein synthesis, degradation, and phosphorylation reactions,

transport across a system boundary, etc.). Still, as a physical

law, detailed balance must be obeyed by all reversible and

non-energy-driven reactions at equilibrium. The conse-

quence is that, in a model, detailed balance must be imposed

for any non-energy-driven reaction cycle to satisfy the

physical constraint even if a system may always function

away from equilibrium due to constant energy dissipation or

externally imposed fluxes. To impose detailed balance on

the relevant part of a reaction network, it is necessary to

distinguish irreversible energy-driven reactions from non-

energy-driven reversible reactions. We take this information

as given in the model specification.

We note that reversible reactions outside any reaction loop

trivially satisfy detailed balance. Rate constants for these

noncyclic reactions need not be part of an imposed detailed

balance constraint. Therefore, the reaction scheme on which

we need to impose detailed balance may be much smaller

than the full scheme. As an example, let us consider the

overall reaction scheme in Fig. 2. We can construct a binary

matrix T encoding only the reaction scheme as

T ¼

0 1 1 0 0

1 0 1 0 1

1 1 0 0 0

1 0 0 0 0

0 1 0 0 0

0
BBBB@

1
CCCCA
:

The vector g(x) ¼ [AB2 C D E F]T. To obtain the minimal

reaction scheme that must satisfy detailed balance, one can

remove the irreversible reaction E / A 1 2B by setting

T41 ¼ 0 and remove the reversible acyclic reactions by

setting T52 ¼ 0 and then T25 ¼ 0. The minimal scheme is

enclosed in the dashed box in Fig. 2.

Now we discuss how to automate the process of finding

the minimal reaction scheme for large networks. Given a

binary matrix T encoding the overall reaction scheme (i.e.,

tij ¼ 1 if there is a transition from state i to j or from reaction

group i to j in mass-action networks, otherwise tij ¼ 0) and

a binary matrix Te encoding all energy-driven reactions,

we can obtain the minimal reaction scheme for imposing

detailed balance by removing three types of reactions:

1. Remove all energy-driven reactions, by subtracting Te

from T, i.e., T9 ¼ T – Te.

2. Remove all the irreversible reactions, by setting T9ij ¼ 0 if

T9ij 6¼ 0 and T9ji ¼ 0. We denote the resulting matrix as T$.

3. Remove all the reversible acyclic reactions. We note that

a state (or a reaction group in a mass action network) that

is connected to only one other state is a state in an acyclic

reaction and it can be removed from the full scheme. For

any row i in T$, we set t$ij ¼ 0 and t$ji ¼ 0 if t$ij is the only

nonzero entry in the row. Remove all such states

iteratively until states in the resulting matrix T̃ are con-

nected to at least two other states.

The above procedure, however, cannot remove acyclic

reactions that bridge disjoint cycles. Even though the number

of such reactions is probably small in most biochemical

reaction networks (e.g., it appears that there is no such

acyclic reaction in the example that follows), these reactions

can be removed by the following numerical method.

It is clear that acyclic reactions are always balanced at

steady-state. Letting Q be an arbitrary generator consistent

with the reduced scheme T̃, we can solve wTQ ¼ 0 for the

steady-state distribution w, and any reaction that satisfies

wiqij ¼ wjqji is an acyclic reaction and can be removed. With

extremely low probability, reactions in cycles might be

balanced by chance and erroneously removed because Q is

arbitrary and w is solved numerically. To eliminate such

cases, one can run the procedure multiple times to increase

the confidence and can always verify whether detailed bal-

ance is satisfied by the full scheme. We note that T̃ may

contain disjoint schemes. Thus, the null space of Q may have

more than one dimension. In such cases, one can construct w
as a linear combination of the basis of the null space and

ensure it contains no zero entries.

We have applied the above methods to find the minimal

reaction network in a recently developed model for signaling

by epidermal growth factor receptor (EGFR) (11). The data file

and the MatLab code for this example are available online as

Supplementary Material. The model contains 356 biochemical

species, 1667 reaction groups, and 3749 unidirectional reac-

tions. This model is generated by a rule-based and automated

reaction network generator program called BioNetGen (12).

The model has 701 energy-driven protein phosphorylations

and dephosphorylations and 2460 acyclic reactions. The

minimal reaction network contains 588 unidirectional reactions

in cycles and 258 reaction groups, a much reduced reaction

scheme. It is worth noting that the minimal network of the

EGFR model contains 34 disjoint schemes (the number of the

null space dimension of the minimal K matrix). In contrast

to our method, a cycle-based approach would need to identify

all the disjoint schemes and a fundamental cycle basis would

need to be found for each one.

CONCLUSION

Imposing detailed balance in a complex reaction mechanism

using the previously proposed method (2) involves tech-

niques to identify a cycle basis in the reaction scheme. It has

been shown that finding a minimum cycle basis (which gives

rise to simpler equations than does an arbitrary fundamental

cycle basis) has computational complexity O((m 1 n)3.376)

(13), where m and n denote the number of undirected edges

(reversible transitions or reactions) and the number of

vertices (states or reaction groups), respectively. For some

applications with small networks, this cost may not be
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significant or rate-limiting. The computational cost will be

high for finding reaction cycles in a large network such as

that of the EGFR model considered above. In this article, we

present an alternative method of imposing detailed balance

for both single molecule kinetics and nonlinear mass-action

kinetics. The method provides a parameterization procedure

for reaction rate constants without explicitly considering

reaction cycles. We give a method to identify the minimal

reaction scheme for imposing detailed balance whenever a

system contains energy-driven, irreversible, and acyclic

reversible reactions. For single molecule kinetics with ex-

ponential voltage dependence and mass-action ligand bind-

ing, we have shown how to fully parameterize the generator

to satisfy detailed balance. This parameterization explicitly

gives the correct ligand- and voltage-dependence for the

equilibrium states.

SUPPLEMENTARY MATERIAL

An online supplement to this article can be found by visiting

BJ Online at http://www.biophysj.org.
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